tdf#120413 LibreLogo: handle complex Logo expressions
Instead of the incomplete heuristic parenthesis expansion,
now expressions with Logo functions and with own
procedures are parsed completely, solving several issues
with complex Logo expressions. For example, now functions with
more than 1 argument don't need explicit parenthesization.
NOTE: to handle both Logo and Python syntaxes of function calls,
we differentiate the forms "f(x)" and "f (x)". The second form
is handled as Logo syntax, not the Python one:
f x*2 y z -> f(x*2, y, z)
f(x*2, x, z) -> f(x*2, y, z)
f (x*2) y z -> f((x*2), y, z)
so if you want to avoid of the following expansion:
sin 45 + cos 45 -> sin(45 + cos(45))
it's possible to use the following parenthesizations:
sin(45) + cos 45 -> sin(45) + cos(45)
(sin 45) + cos 45 -> (sin(45)) + cos(45)
but not
sin (45) + cos 45 -> sin((45) + cos(45))
Change-Id: Ib0602b47b8b678a352313f471599d44d6904ce17
Reviewed-on: https://gerrit.libreoffice.org/62901
Tested-by: Jenkins
Reviewed-by: László Németh <nemeth@numbertext.org>
diff --git a/librelogo/source/LibreLogo/LibreLogo.py b/librelogo/source/LibreLogo/LibreLogo.py
index 103b606..53f62a3 100644
--- a/librelogo/source/LibreLogo/LibreLogo.py
+++ b/librelogo/source/LibreLogo/LibreLogo.py
@@ -1697,7 +1697,6 @@
[r"(?<!:)\b(?:%s)\b" % a['BACKWARD'], "\n)backward("],
[r"(?<!:)\b(?:%s)\b" % a['TURNRIGHT'], "\n)turnright("],
[r"(?<!:)\b(?:%s)\b" % a['RANDOM'], "Random"],
[r"(?<!:)\b(?:%s)\b(?= \d)" % 'Random', "random.random()*"],
[r"(?<!:)\b(?:%s)\b" % a['SET'], "set"],
[r"(?<!:)\b(?:%s)\b" % a['RANGE'], "range"],
[r"(?<!:)\b(?:%s)\b" % a['LIST'], "list"],
@@ -1708,22 +1707,106 @@
[r"(?<!:)\b(?:%s)\b ?\(" % a['REFINDALL'], "re.findall('(?u)'+"],
[r"(?<!:)\b(?:%s)\b" % a['ANY'], "u'any'"],
[r"(?<!:)\b(?:%s) (\w+|[[][^\]]*])\b" % a['INPUT'], " Input(\\1)"],
[r"(?<!:)\b(?:%s)\b" % a['PRINT'], "\n)Print("],
[r"(?<!:)\b(?:%s)\b" % a['PRINT'], "\nPrint"],
[r"(?<!:)\b(?:%s)\b" % a['TURNLEFT'], "\n)turnleft("],
[r"\b([0-9]+([,.][0-9]+)?)(%s)\b" % a['PT'], "\\1"],
[r"\b([0-9]+([,.][0-9]+)?)(%s)(?!\w)" % a['INCH'], lambda r: str(float(r.group(1).replace(",", "."))*72)],
[r"\b([0-9]+([,.][0-9]+)?)(%s)\b" % a['MM'], lambda r: str(float(r.group(1).replace(",", "."))*__MM_TO_PT__)],
[r"\b([0-9]+([,.][0-9]+)?)(%s)\b" % a['CM'], lambda r: str(float(r.group(1).replace(",", "."))*__MM_TO_PT__*10)],
[r"\b(__(?:int|float|string)__len|round|abs|sin|cos|sqrt|log10|set|list|tuple|sorted)\b ((?:\w|\d+([,.]\d+)?|0[xX][0-9a-fA-F]+|[-+*/]| )+)\)" , "\\1(\\2))" ], # fix parsing: (1 + sqrt x) -> (1 + sqrt(x))
[r"(?<=[-*/=+,]) ?\n\)(\w+)\(", "\\1()"], # read attributes, eg. x = fillcolor
[r"(?<=return) ?\n\)(\w+)\(", "\\1()"], # return + user function
[r"(?<=(?:Print|label)\() ?\n\)(\w+)\(", "\\1()\n"] # Print/label + user function
]
def __concatenation__(r): # keep line positions with extra line breaks
s = re.subn("~[ \t]*\n", " ", r.group(0))
return s[0] + "\n" * s[1]
# convert Logo expressions to Python ones by adding
# missing parentheses to procedure and function calls
# f x y z -> f(x, y, z)
# a = [sin len f [cos 45, 6] [1, 2, 3] sin 90] ->
# a = [sin(len(f([cos(45),6],[1, 2, 3], sin(90))]
# NOTE: "f(45)" and "f (45)" are not the same:
# sin(45) + cos 45 -> sin(45) + cos(45)
# sin (45) + cos 45 -> sin(45 + cos(45))
def __l2p__(i, par, insub, inarray):
first = True
while par["pos"] < len(i):
pos = par["pos"]
ch = i[pos]
ignored = False
# starting parenthesis
if ch in "([":
if insub and not inarray and not first and par["out"][-1:] != "]":
return
par["out"] += ch
par["pos"] += 1
__l2p__(i, par, insub, True)
# ending parenthesis
elif ch in ")]":
if insub and not inarray:
return
# put character before terminating spaces
par["out"] = re.sub("( *)$", ch + "\\1", par["out"])
par["pos"] += 1
return
# starting a subroutine
elif pos in par["sub"]:
if insub and not inarray and not first:
return
first = False
subname = i[pos:par["sub"][pos]]
par["pos"] += len(subname)
par["out"] += subname
# Logo syntax: add parentheses
# for example: foo x y z -> foo(x, y, z)
par["out"] += "("
for j in range(par["names"][subname]):
# add commas, except if already added, eg. with special RANGE
# (variable argument counts: RANGE 1 or RANGE 1 100 or RANGE 1 100 10)
if j > 0 and par["out"][-1] != ",":
par["out"] = re.sub("( *)$",",\\1", par["out"])
__l2p__(i, par, True, False)
par["out"] = re.sub("( *)$", ")\\1", par["out"])
# operators
elif pos in par["op"]:
op = i[pos:par["op"][pos]]
par["out"] += op
par["pos"] += len(op)
__l2p__(i, par, insub, False)
# other atoms
elif pos in par["atom"]:
if insub and not inarray and not first:
return
first = False
atom = i[pos:par["atom"][pos]]
par["out"] += atom
par["pos"] += len(atom)
# handle subroutines with explicite parentheses
# and array indices
if i[par["pos"]:par["pos"]+1] in "([":
first = True
continue
# optional negative or positive sign
elif ch in "-+":
if insub and not inarray and not first:
return
par["out"] += ch
par["pos"] += 1
ignored = first
elif ch == " ":
par["out"] += ch
par["pos"] += 1
ignored = first
elif insub and ((ch == "," and not inarray) or (ch != ",")):
return
else:
par["out"] += ch
par["pos"] += 1
# end of first subexpression, except in the case of ignored characters
if not ignored:
first = False
def __compil__(s):
global _, comp, __strings__, __compiled__
try:
@@ -1749,7 +1832,6 @@
__loadlang__(_.lng, __l12n__(_.lng))
_.decimal = __l12n__(_.lng)['DECIMAL']
names = {}
rmsp = re.compile(r"[ ]*([=+*/]|==|<=|>=|<>|!=|-[ ]+)[ ]*")
chsp = re.compile(r"[ \t]+")
@@ -1791,6 +1873,10 @@
subnames = re.findall(u"(?iu)(?<=__def__ )\w+", s)
globs = ""
functions = ["range", "__int__", "__float__", "Random", "Input", "__string__", "len", "round", "abs", "sin", "cos", "sqrt", "log10", "set", "list", "tuple", "re.sub", "re.search", "re.findall", "sorted", "min", "max"]
defaultfunc = ["Print"] # TODO handle all default procedures
names ={key: 1 for key in functions + defaultfunc}
names["range"] = names["re.sub"] = 3
names["re.search"] = names["re.findall"] = 2
if len(subnames) > 0:
globs = "global %s" % ", ".join(subnames)
@@ -1810,66 +1896,56 @@
if len(procedures) > 0:
s = re.sub(r"(?<!__def__)(?<![-+=*/])(?<!%s)(?:^|[ \t]+)(" % ")(?<!".join(functions) + "|".join(procedures) + ")(?!\w)", r"\n\1", s)
# compile native Logo
# substitute LibreLogo functions and specifiers with their Python equivalents
for i in __comp__[_.lng]:
s = re.sub(u"(?u)" + i[0], i[1], s)
indent = 0
indent = 0 # Python indentation level
result = ""
func = re.compile("(?iu)(def (\w+))(\(.*\):)")
expr = r"""(?iu)(?<!def[ ])(?<![:\w])%(name)s(?!\w)(?!\()(?![ ]\()
(
([ ]+\[*([-+]|\([ ]?)*((%(functions)s)\b[ ]*\(*)*
(?:0x[0-9a-f]+|[0-9]+([,.][0-9]+)?|:?\w+(?:[.]\w+[\(]?[\)]?)?]*|\[])]*[\)]*
(
(?:[ ]*([+*/,<>]|//|==|<=|>=|<>|!=)[ ]*|[ ]*-[ ]+|-|[ ]*[*][*][ ]*) # operators, eg. "**", " - ", "-", "- "
\[*([-+]|\([ ]?)* # minus sign, parenthesis
((%(functions)s)\b[ ]*\(*)*(0x[0-9a-f]+|[0-9]+([.,][0-9]+)?|:?\w+(?:[.]\w+[\(]?[\)]?)?)]*
([ ]?\))*)*
[\)]*){,%(repeat)s}
)
"""
chargsp = re.compile(r"(?<![\(,])(?<!%s) (?!\)|,)" % ")(?<!".join(functions))
# compile to Python
joinfunc = "|".join(functions)
funcnames = {}
subroutines = re.compile(r"(?iu)(?<!def )(?<![_\w])\b(%s)\b(?![\w(])" % "|".join(subnames + functions + defaultfunc))
operators = re.compile(r"(?iu)(%s)" % "(?:[ ]*([+*/<>]|//|==|<=|>=|<>|!=)[ ]*|[ ]*-[ ]+|(?<! )-[ ]*|[ ]*[*][*][ ]*)") # operators, eg. " - ", "-", "- "
atoms = re.compile(r"(?iu)(%s)" % "[0-9]+([.,][0-9]+)?|\w+([.]\w)?")
for i in s.split("\n"):
i = i.strip()
# store argument numbers of subroutines in names
if i[0:4] == 'def ':
s = func.search(i)
if s.group(3) == '():':
names[s.group(2)] = (0, "")
names[s.group(2)] = 0
else:
s2 = len(chsp.findall(s.group(3))) + 1
i = s.group(1) + chsp.sub(", ", s.group(3))
names[s.group(2)] = (s2, re.compile(expr % {"name": s.group(2), "functions": joinfunc, "repeat": s2}, re.X))
for j in functions:
if j in i:
if not j in funcnames:
funcnames[j] = (1, re.compile(expr % {"name": j, "functions": joinfunc, "repeat": 1 + 2 * int(j == 'range')}, re.X))
r = funcnames[j][1].search(i)
while r:
i = i[:r.start()] + j + '(' + chargsp.sub(", ", rmsp.sub(lambda l: l.group(1).strip(), r.group(1).strip())) + ')' + i[r.end():]
i = parenfix.sub("\\1)]", i)
r = funcnames[j][1].search(i)
for j in names:
if j in i:
if names[j][0] == 0:
if not j in functions:
i = re.sub(r"(?iu)(?<!def )(?<![_\w])\b%s\b(?!\w)" %j, j+'()', i)
else:
r = names[j][1].search(i)
if r:
i = i[:r.start()] + j + '(' + chargsp.sub(", ", rmsp.sub(lambda l: l.group(1).strip(), r.group(1).strip())) + ')' + i[r.end():]
i = parenfix.sub("\\1)]", i)
names[s.group(2)] = s2
# convert Logo expressions to Python ones using regex based tokenization
# tokens: {startpos: endpos} dictionaries for subroutine names, operators and other tokens
# sub: subroutine tokens = positions of Logo subroutine names
# (without explicite parentheses, for example: "f x" or "f (x*2)", but not "f(x)")
sub = {key: value for (key, value) in [j.span() for j in list(subroutines.finditer(i))]}
if sub != {}:
# op: operator tokens
op = {key: value for (key, value) in [j.span() for j in list(operators.finditer(i))]}
# atom: other tokens (variable names, numbers and function names)
atom = {key: value for (key, value) in [j.span() for j in list(atoms.finditer(i))]}
par = {"pos": 0, "out": "", "sub": sub, "op": op, "atom": atom, "names": names}
__l2p__(i, par, False, False)
i = par["out"]
# starting program block
if i[0:1] == '[':
i = i[1:]
indent += 1
# check program stop, for example, in every execution of a loop
result = result + "\n" + " " * indent + "__checkhalt__()\n"
# fix position of ending parenthesis
if i[0:1] == ')':
i = i[1:] + ')'
result = result + "\n" + " " * indent + i
# ending program block
if i[0:1] == ']':
result = result[:-1]
indent -= 1
diff --git a/sw/qa/uitest/librelogo/compile.py b/sw/qa/uitest/librelogo/compile.py
index b6eaa64..73c2e8f 100644
--- a/sw/qa/uitest/librelogo/compile.py
+++ b/sw/qa/uitest/librelogo/compile.py
@@ -80,7 +80,7 @@
("TO x\nOUTPUT 3\nEND", "global x\ndef x():\n __checkhalt__()\n %s\n return 3\n %s" % (((self.LS),)*2)),
# PROCEDURE WITH ARGUMENTS
("TO x y\nLABEL y\nEND\nx 25", "global x\ndef x(y):\n __checkhalt__()\n %s\n label(y)\n %s\n%s\nx(25)" % (((self.LS),)*3)),
("TO x :y :z\nLABEL :y + :z\nEND\nx 25", "global x\ndef x(_y, _z):\n __checkhalt__()\n %s\n label(_y + _z)\n %s\n%s\nx(25)" % (((self.LS),)*3)),
("TO x :y :z\nLABEL :y + :z\nEND\nx 25 26", "global x\ndef x(_y, _z):\n __checkhalt__()\n %s\n label(_y + _z)\n %s\n%s\nx(25, 26)" % (((self.LS),)*3)),
# UNICODE VARIABLE NAMES
("Erdős=1", "Erd__u__0151s=1"),
# STRING CONSTANTS
@@ -88,9 +88,37 @@
("LABEL “label”", "label(u'label')"),
("LABEL 'label'", "label(u'label')"),
("LABEL ‘label’", "label(u'label')"),
# check apostrophe and quote usage within strings
("LABEL “label\’s”", "label(u'label’s')"),
("LABEL ““It\’s quote\’s...\””", "label(u'“It’s quote’s...”')"),
("LABEL ““It\\'s quote\\'s...\””", "label(u'“It\\'s quote\\'s...”')"),
# CONVERSION OF LOGO EXPRESSIONS
("a=SIN 100 + COS 100", "a=sin(100 + cos(100))"),
("a=SIN(101) + COS(101)", "a=sin(101) + cos(101)"),
("a=(SIN 102) + (COS 102)", "a=(sin(102)) + (cos(102))"),
("a=SIN 103 + COS 103 - SQRT 103", "a=sin(103 + cos(103 - sqrt(103)))"),
("a=(SIN 104 + COS 104) - SQRT 104", "a=(sin(104 + cos(104))) - sqrt(104)"),
("a=COUNT [1, 2, 3]", "a=len([1, 2, 3])"),
("PRINT COUNT [1, 2, 3]", "Print(len([1, 2, 3]))"),
("PRINT 'TEXT: ' + 'CHAR'[0] + ' TEXT2: ' + variable[-1]", "Print(u'TEXT: ' + u'CHAR'[0] + u' TEXT2: ' + variable[-1])"),
("PRINT 'TEXT: ' + 'CHAR'[0][n] + ' TEXT2: ' + varia[len k][i+1]", "Print(u'TEXT: ' + u'CHAR'[0][n] + u' TEXT2: ' + varia[len(k)][i+1])"),
("a=SQRT COUNT [1, 2, 3]", "a=sqrt(len([1, 2, 3]))"),
("a=RANGE 1", "a=range(1,)"),
("a=RANGE 1 10", "a=range(1, 10,)"),
("a=RANGE 1 10 5", "a=range(1, 10, 5)"),
("a=RANDOM 40 + 120", "a=Random(40 + 120)"),
("a=RANDOM(40) + 120", "a=Random(40) + 120"),
("a=RANDOM [1, 2, 3]", "a=Random([1, 2, 3])"),
("a=[sin 90 + cos 15, cos 100 * x, sqrt 25 * 25]", "a=[sin(90 + cos(15)), cos(100 * x), sqrt(25 * 25)]"),
("a=[sin 90 + cos 15, cos 100 * x, sqrt 25 * 25]", "a=[sin(90 + cos(15)), cos(100 * x), sqrt(25 * 25)]"),
("a=[sin(90) + cos 15, cos(100) * x, sqrt(25) * 25]", "a=[sin(90) + cos(15), cos(100) * x, sqrt(25) * 25]"),
("TO x y z\nOUTPUT 3\nEND", "global x\ndef x(y, z):\n __checkhalt__()\n %s\n return 3\n %s" % (((self.LS),)*2)),
("TO x\nOUTPUT 3\nEND", "global x\ndef x():\n __checkhalt__()\n %s\n return 3\n %s" % (((self.LS),)*2)),
("TO f x y z\nOUTPUT x+y+z\nEND\na = [-sin -len f [-cos 45, 6] -len [1, 2, 3] -sin -90", "global f\ndef f(x, y, z):\n __checkhalt__()\n %s\n return x+y+z\n %s\n%s\na = [-sin(-len(f([-cos(45), 6], -len([1, 2, 3]), -sin(-90))))" % (((self.LS),)*3)),
("TO f x y z\nOUTPUT x+y+z\nEND\na = [sin len f [cos 45, 6] [1, 2, 3] sin 90", "global f\ndef f(x, y, z):\n __checkhalt__()\n %s\n return x+y+z\n %s\n%s\na = [sin(len(f([cos(45), 6], [1, 2, 3], sin(90))))" % (((self.LS),)*3)),
("TO f x y z\nLABEL x+y+z\nEND\nf len [1, cos 2, [65]] sqrt len [1, 2, 3, 4] sin 90 * cos 270", "global f\ndef f(x, y, z):\n __checkhalt__()\n %s\n label(x+y+z)\n %s\n%s\nf(len([1, cos(2), [65]]), sqrt(len([1, 2, 3, 4])), sin(90 * cos(270)))" % (((self.LS),)*3)),
("TO f x y z\nLABEL x+y+z\nEND\nf len([1, cos 2, [65]]) sqrt(len [1, 2, 3, 4]) sin(90) * cos 270", "global f\ndef f(x, y, z):\n __checkhalt__()\n %s\n label(x+y+z)\n %s\n%s\nf(len([1, cos(2), [65]]), sqrt(len([1, 2, 3, 4])), sin(90) * cos(270))" % (((self.LS),)*3)),
("TO f x y z\nLABEL x+y+z\nEND\nf (len [1, cos 2, [65]]) (sqrt len [1, 2, 3, 4]) (sin 90) * (cos 270)", "global f\ndef f(x, y, z):\n __checkhalt__()\n %s\n label(x+y+z)\n %s\n%s\nf((len([1, cos(2), [65]])), (sqrt(len([1, 2, 3, 4]))), (sin(90)) * (cos(270)))" % (((self.LS),)*3)),
):
compiled = xCompile.invoke((test[0],), (), ())[0]
self.assertEqual(test[1], re.sub(r'(\n| +\n)+', '\n', re.sub(r'\( ', '(', compiled)).strip())